72 research outputs found

    Possible Wormhole Solutions in (4+1) Gravity

    Get PDF
    We extend previous analyses of soliton solutions in (4+1) gravity to new ranges of their defining parameters. The geometry, as studied using invariants, has the topology of wormholes found in (3+1) gravity. In the induced-matter picture, the fluid does not satisfy the strong energy conditions, but its gravitational mass is positive. We infer the possible existance of (4+1) wormholes which, compared to their (3+1) counterparts, are less exotic.Comment: 3 pages, latex, 1 figure

    Qualitative Analysis of Early Universe Cosmologies

    Get PDF
    A qualitative analysis is presented for a class of homogeneous cosmologies derived from the string effective action when a cosmological constant is present in the matter sector of the theory. Such a term has significant effects on the qualitative dynamics. For example, models exist which undergo a series of oscillations between expanding and contracting phases due to the existence of a heteroclinic cycle in the phase space. Particular analytical solutions corresponding to the equilibrium points are also found.Comment: Submitted to Journal of Mathematical Physics, 18 pages, 4 figures, uses package "graphicx" to insert figure

    Qualitative Analysis of Isotropic Curvature String Cosmologies

    Full text link
    A complete qualitative study of the dynamics of string cosmologies is presented for the class of isotopic curvature universes. These models are of Bianchi types I, V and IX and reduce to the general class of Friedmann-Robertson-Walker universes in the limit of vanishing shear isotropy. A non-trivial two-form potential and cosmological constant terms are included in the system. In general, the two-form potential and spatial curvature terms are only dynamically important at intermediate stages of the evolution. In many of the models, the cosmological constant is important asymptotically and anisotropy becomes dynamically negligible. There also exist bouncing cosmologies.Comment: Accepted to Classical and Quantum Gravity, 40 pages, 12 figures (uses "graphicx" package for figures

    Induced Matter and Particle Motion in Non-Compact Kaluza-Klein Gravity

    Get PDF
    We examine generalizations of the five-dimensional canonical metric by including a dependence of the extra coordinate in the four-dimensional metric. We discuss a more appropriate way to interpret the four-dimensional energy-momentum tensor induced from the five-dimensional space-time and show it can lead to quite different physical situations depending on the interpretation chosen. Furthermore, we show that the assumption of five-dimensional null trajectories in Kaluza-Klein gravity can correspond to either four-dimensional massive or null trajectories when the path parameterization is chosen properly. Retaining the extra-coordinate dependence in the metric, we show the possibility of a cosmological variation in the rest masses of particles and a consequent departure from four-dimensional geodesic motion by a geometric force. In the examples given, we show that at late times it is possible for particles traveling along 5D null geodesics to be in a frame consistent with the induced matter scenario.Comment: 29 pages, accepted to GR

    Scalar Field Cosmologies with Barotropic Matter: Models of Bianchi class B

    Get PDF
    We investigate in detail the qualitative behaviour of the class of Bianchi type B spatially homogeneous cosmological models in which the matter content is composed of two non-interacting components; the first component is described by a barotropic fluid having a gamma-law equation of state, whilst the second is a non-interacting scalar field (phi) with an exponential potential V=Lambda exp(k phi). In particular, we study the asymptotic properties of the models both at early and late times, paying particular attention on whether the models isotropize (and inflate) to the future, and we discuss the genericity of the cosmological scaling solutions.Comment: 18 pages, 1 figure, uses revtex and epsf to insert figur

    Scaling Solutions in Robertson-Walker Spacetimes

    Full text link
    We investigate the stability of cosmological scaling solutions describing a barotropic fluid with p=(γ1)ρp=(\gamma-1)\rho and a non-interacting scalar field ϕ\phi with an exponential potential V(\phi)=V_0\e^{-\kappa\phi}. We study homogeneous and isotropic spacetimes with non-zero spatial curvature and find three possible asymptotic future attractors in an ever-expanding universe. One is the zero-curvature power-law inflation solution where Ωϕ=1\Omega_\phi=1 (γ2/3,κ2<2\gamma2/3,\kappa^2<2). Another is the zero-curvature scaling solution, first identified by Wetterich, where the energy density of the scalar field is proportional to that of matter with Ωϕ=3γ/κ2\Omega_\phi=3\gamma/\kappa^2 (γ3γ\gamma3\gamma). We find that this matter scaling solution is unstable to curvature perturbations for γ>2/3\gamma>2/3. The third possible future asymptotic attractor is a solution with negative spatial curvature where the scalar field energy density remains proportional to the curvature with Ωϕ=2/κ2\Omega_\phi=2/\kappa^2 (γ>2/3,κ2>2\gamma>2/3,\kappa^2>2). We find that solutions with Ωϕ=0\Omega_\phi=0 are never late-time attractors.Comment: 8 pages, no figures, latex with revte
    corecore